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THE MODEL PROBLEM OF CONTROLLING THE LATERAL MOTION 
OF AN AIRCRAFT DURING LANDING* 

N.D. BOTKIN, V.M. KEIN and V.S. PATSKO 

The problem of controlling the lateral motion of an aircraft during its 
final landing stages under windy conditions is studied in the linear 
approximation. The problem is formalized in the form of an antagonistic 
two-person positional differential game with a fixed time of termination 
and convex payoff function. Results of a numerical solution are described. 
The paper is related to /l-5/. 

1. The lateral motion of a medium-size transport plane in its final approach to landing 
can be described in the linear approximation by the following differential vector equation 
/3, 6/: 5' = Ax +Bu + cu, XER' (1.1) 

0 1 0 0 0 0 0 
0 -0,0762 -5,34 0 9,81 0 0 
0 0 0 1 0 0 0 

A= 0 -0,0056 -0,392 -0,0889 -0,0378 -0,17 0,0378 
0 0 0 0 --1 0 i 
0 -0,0129 -0,9016 -0,2045 -0,0869 -0,89 0,0869 
0 0 0 0 0 0 -k 

B = (0; 0; 0;O; 0; 0; k)',C = (0;0,0762; 0; 0,0056; 0;0,0129;0)' 

The first component xlof the phase vector describes the lateral deviation of the centre 
of mass of the plane from the axis of the runway, r,is the rate of lateral deviation, .z,is 
the yaw angle (measured from the runway axis) , x,is the rate of change of the yaw angle, xj 
is the roll angle and xBrzl are the auxiliary variables. The control parameter u is treated 
as a given roll angle /7/ and the parameter v as the lateral component of the wind velocity. 
The coefficient k in the matrix A and column B characterises the inertia of the process 
of tracking the prescribed roll and is assumed to be unchanged during the motion. The lateral 
deviation is measured in meters, the angles in radiants, and the time in seconds. 

We shall study the behaviour of system (1.1) in the time interval [0,6] where 6 is the 
instant of passing the runway and is to be assumed constant. The assumption is justified, if 
we suppose that the lengthwise motion of the plane is independent of the lateral motion and 
takes place according to a prescribed program /7, 8/. Henceforth, we shall put 6 = 15 sec. 

Safety considerations limit the prescribed roll angle in modulo, and the amount of restric- 
tion depends on the altitude /7/. Assuming that the altitude is related uniquely to t, we 
shall write /3/ 

I u 1 <p (t) = 0,2613 - 0,0116t radians (1.2) 

We shall assume that the restriction imposed on the magnitude of the lateral component 
of the wind velocity is independent of t. Suppose 

Iv1 gv=10 m/set. (1.3) 

We shall say that the parameter u belongs to the first player, and u to the second. We 

define in the plane of the phase variable x1,z2 the set 

and introduce the payoff function 

cp (xl, x2) = nin {c > 0: (x1, 5%) E CM} (1.4) 

We will assume that the purpose of the first player is to minimize the values cp(x,@),z,@)), 
and the second player has the opposite interest. The set M is symmetrical about zero. Fig.1 
shows its upper part (curve 6). The set M is chosen /9/ by analyzing the motion of the plane 
after passing the end of the runway; if at the instant 6 the lateral deviation z1 (6) and 
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its rate of change z,(6)are such that (z1 0% 52 P)) E J@, tiler, after the instant fi rapid Mom- 
pletion of the landing is guaranteed. If (x1(6),s,(6))e M, then there is no such guarantee. 

We shall understand by the admissible strategies of the first player /l/, the functions 

Fig.1 

U placing every position (t,s)~ [O,@] X R' in 1:l correspondence with the number lJ (6 z) 
satisfting the condition 1 U(t,s) I< p(t). We denote by z(., tO,zo, U, A, v (.)) the motion of 
system (1.1) emerging at the instant t, ~[0,6] f rom the point s,when the first player applies 
some admissible strategy LJ to a discrete control scheme /l/ with step A, and the second player 
realizes some measurable function of time v(.) satisfying the condition ) v(t) 1 <v. Let 

Y"'(~o, zo, Up A) =~pcp(~1(~,t,,~,,U,A,u(.)),~,(6, to, ro, U,A,u(.))) (1.5) 

r(l) (to,so) = min KY') (to, x0, U, A) 
u b-0 

The quantity l?(l) (t,,z,) represents the optimal guarantee of the first player for the 
initial position (to, zo). 

Similarly, in case of the second player we shall represent the admissible strategies by 
the arbitrary functions V putting every position (t,x) in 1:l correspondence with the number 
V(t,z) satisfying the condition 1 V(t,z) 1 <v. We write 

r(2)(10, zo) = max lim y(*)(to, zor V, A) 
V ZZ 

(1.6) 

where ~(2) is introduced, just as $1, with obvious changes in the definition. 
We know /l/ that r(')(t,,s,,) = r(2)(t0,t0) for a game of the type (l.l)-(1.4) for any initial 

position (to, Z,j. Below, we shall write I? instead of r(l), IV). The function r is called the 
cost function of the game, and the strategies r, v", on which the minimum in (1.5) and maxi- 
mum in (1.6) are attained, are the optimal strategies of the first and second player. In the 
general case the strategies u",P can depend on the initial position. From /4, 5/ it follows 
that a universal optimal strategy /l, 2/ of the first player exists in the game (l.l)-_(1.4), 
i.e. strategy optimal for all initial positions. We shall describe an algorithm for the 
numerical construction of such a strategy. The universal strategy of the second player is 
constructed in exactly the same manner as that of the first player. It will not however be 
optimal in the strict sense, like the strategy of the first player. We shall consider a 
combined strategy of the first player representing a combination of the universal optimal 
strategy and a strategy base on a linear function. 

When k+w, system (1.1) transform into system (4.1) of /3/. The restrictions (1.2), 
(1.3) are identical with restrictions (4.2), and the payoff function (1.4) is close to payoff 
function (4.3). In /3/ an algorithm is given for the numerical construction of the universal 
strategy of the first player based on the method of extremal aiming /lo/. However, since the 
problem (4.1)-(4.3) is not regular /l, lo/, the method does not ensure the optimal result for 
the first player. Neither is the differential game (l.l)-(1.4) studied below, regular. 

2. Since the differential game (l.l)-(1.4) is a linear game with a fixed termination 
time 6, it has the following special feature: the payoff function 'p depends on the values 
of only two components of the phase vector r(6), namely on I~(@) and ~(6). This allows us 
/l, ll/ to pass, using the substitution y (t) = X,,,(e, t)*(t), from the game (l.l)-(1.4) to 
the equivalent second-order game 

y‘ = D (t) u + E (t) v, y E R* (2.1) 
D (t) = P (t) XI,, (*, t) B, E (t) = vX,,, (19, t) C 
lul<l, lvl<l 

Here X,,,@,t) is a matrix consisting of the first two rows of the fundamental Cauchy 
matrix X (6,t) = exp A (19 -t). The payoff function remains unchanged for the game (2.1). we 
denote the cost function by r. The relation I? (t. I) = I’ (t, X,,, (6, t)z) holds. 

The set of the level w, = {(t,y)~ [0.6] x RZ: r(t,y) (c), c> 0 of the cost function in 
game (2.1) is identical with the set of positional absorption of the specific set M, = chf 
at the instant 6, or, which is the same in the present case, with the maximum u-stable bridge 
arriving at .u,/l/ at the instant 6. The cross-section w,(t) = (y E R": (t,y)~ W,} is identical 
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with the antisymmetrized integral /12/ of the set M, forthegame (2.1) in the interval It, 61. 
The cross-sections iv,(t) were found using the standard program of constructing the 

positional absorption sets developed at the Institute of Mathematics and Mechanics, Ukrainian 
Scientific Centre, Academy of Sciences of the USSR. The cross-sections WC(t) are symmetrical 

about zero. Fig.1 shows the upper parts of the cross-sections obtained on a computer for 
k = 1, c = 1 for the times t = 0,5,9,11,14,15 and labelled with the numbers 1-6 respectively. 
We note that W,(l5) = M,. 

The set W, is the maximum "tube" in the space of variables t,y,,y,, from which the first 

player guarantees the arrival of system (2.1) to the setM,irrespectiveof the actions of the 
second player. In terms of system (1.1) this means the following. If the initial position 

(to, zO) is such that X1,, (6, t,)s, E W, (to),. th en the first player-has a strategy /l/ guarantee- 
ing the inclusion (21 (e), z,(e))= M,. If X,,, (6,to)z0 g We(to), then there is no such strategy. 
Moreover, in this case a strategy of the second player exists /l/ which makes it impossible 
for the point (z,@),~~(@))to arrive at M, no matter what the action of the firstplayer. Thus, 
writing c = 1 we obtain with help of the set W,(O) a complete description of the totality 
of all initial states zO at the instant t, = 0, from which a rapid completion of the landing 
stage is guaranteed. 

Fig.2 Fig.3 Fig.4 

Let us denote by co the smallest c> 0 for which W,(O)+ 0. The quantity c'character- 
izes the potential possibilities of the control u during the time interval [0,6]. Fig.2 shows 
the numerically computed dependence of c'ontheparameter k. 

3. The differential game (l.l)-(1.4) represents a linear game with a fixed instant of 
termination and convex payoff function. The control parameter of the first (minimizing) player 
is a scalar. Under these conditions a stable universal optimal strategy of the first player 
exists /4, 5/. The strategy can be determined with help of a special surface S(l) in thespace 

t, Yl, Yz, playing the part of the switchover surface for the control of the first player. 
Let us describe schematically the method of constructing the cross-sections of thesurface 

Is('). Suppose we wish to construct the cross-section S(l) (t) for the time instant TV [0,6] 
(i.e. the switchover line for the instant t). We denote by c! the smallest c > 0, for which 

W,(t)# 0. choosing a value c,, >ct sufficiently close to el and a sufficently large value 

c* > c*, we define on [c*, c*] an ordered set of increasing numbers cl = c*, c2,...,cn = ct. We 
construct for every ci a set W,!(t). The set Wei is closed, convex and bounded. Travers- 
ing its boundary in the clockwise direction we find the point x1 (or respectively ai) at which 
the scalar product of the vector D(t) and the vector of the external normal to the boundary 
changes its sign from plus to minus (from minus to plus). Going through i from 1 to n, we 
obtain the sets x~,x*, . . ., x, and a,, a,, , . .,a,,. Connecting, one after the other, the points 
of these sets with the segments and x1 with aI, we obtain the polygonal line, and we use it as 
the line SC') (t). The degree of closeness to the "perfect" switchover line is higher, the 
smaller the diameter of partitioning the segment [c+,c*] by the numbers ci and the closer c+ 
to e,. Fig.3 illustrates qualitatively the construction of the switchover line for n = 3. The 
sets PVC,(t), W,,(t) and W,,(t) are denoted by the numbers 1, 2, 3, and the direction of the 
vectors D(t) is indicated by an arrow. 

Let A(l) (t) be a strip in the Y,, y, plane, composed of straight lines passing through 
the set WC. (t) in a direction parallel to the vector D (t). The line S(l)(t) divides the 
strip .4(l) (t) into two parts. We denote the part into which the vector D (t) is pointing 

by s_(l) (0, and the other by S+(l) (t). (In Fig.3 these parts are marked by the minus and plus 
sign respectively). If the point Y (t) * X,,,(ft,t)z(t) arrives at the instant t at S_(l) O), 
then the optimal control V&s(t)) of the first player in system (1.1) must be taken equal 
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to P (4. If the point arrives at s+(l) (t), then the control is p(t). At the line itself an; 

control from the segment [-p(t), p(t)] will suffice. We stress that the size of the strip 
ncl) (t) depends on c*.This value must be chosen (the same for all t, or depending on C,I so 

that any motion g(t) = X,,,(6,t)z(t) with any initial condition 5,) at the instant t,, chosen 

form a reasonable bounded domain of possible initial positions, would find itself at the 
instant t within the strip .1(l) (t). 

Having found the lines S(r) (t) for all instances t~[O,6], we have in fact specified the 
universal optimal strategy u". Since the strategy is realized in the discrete control scheme, 
it follows in fact that it is necessary to construct the lines S(')(t) only for those instances 
at which the control will be chosen for the first player. 

Fig.4 shows the switchover lines of the first player computed numerically at k= 1 for 
the time instances t= 3.5, 7 (the solid lines). Since the cross-sections u;,(t) are symmetrical 
about zero, it follows that so are the switchover lines. Therefore only the upper parts of 
the lines are shown. In computing the lines we used 17 values of the parameter c, ranging 
from C* = 0,63 to C* = 1. The points marked along the lines correspond to C= 0.63; 0.66;0.;9;1 
and are ordered. The last point on each line corresponds to C= I. The qualitative character 

of the switchover lines of the first player is the same for all t~[O.61. Namely, the upper 
part of the line S'"(t) is divided, for all t, by the characteristic corner point, into two 
segments, each segment being nearly linear. The control G"(t. I) takes the value--CIit),when the 

point X1,*(8, t) z lies to the rightof the switchoverline, and l,(t) whenitlies to the left of it. 

4. The definition of the sets WC, ~2-0, andtheproperties of. universality of the strategy 

ci" discussed in the previous section imply, that, if having fixed the number c'we choose the 

control of the first player at the given instant t with help of the strategy I; only when 

Y(t) = zy,,2 (6, t)r(t) $ WC, (t), andspecifythe controlinadifferentmannerwhen y (t)E IV,. (t), then 

the result guaranteed to the first player by this control will be identical with the optimal 

(i.e. the cost of the game) in the case when y(t,)= X,,,(~?,t,)x,t$ WC. (to), and will not exceed 

c' when y (t,,) E W,. (to). We shall use this property to introduce a combined strategy for the 
first player, putting c' = co. 

Let us consider the linear function 

f (I) = (-0, Is, - 1,5z, -+- 5x,)/57,3 
and the function 

The control laws resembling F (i.e. linear laws with restricted amount of bank) are used 

in the flight systems of civil aircraft to stabilize the lateral deviations /7, 13/. 

Let us denote by G(t) a circle of maximum radius inscribed into !VC=(t), We introduce the 

universal combined strategy li'as follows: if the position (t? x) is such that X1,, (6, 1) r-3 G (i). 

we put CT' (t, z) = U” (t, z); if X,,, (6, t) .z~ G (t), then we write C' (t, z) = F (t, 5). 

The strategy U'guarantees the first player, at any initial state x,,, at the instant t, = 0 
a result equal to the optimal result. Thus for the initial positions (& x0) at t, = 0 the 
strategy will not be "worse" than the strategy uO. The strategy u' can be found to be prefer- 

able to the strategy u", since its realization does not result in frequent switchover of the 

control of the first player (slippage mode) when the deviations s(t) from zero in the process 

of motion, are small. 

5. The control parameter v of the second player in system(l.l), as well as the control 

parameter u of the first player, are scalar quantities. Just as we constructed the switchover 

surface SC') in Sect.3 for the first player, we can construct in the space t, y,,yz a switchover 
surface S(2) for the second player, constructing it from the lines S(z) (1). We only need to 
replace the vector D (t) from system (2.11 by the vector E (t). 

Let us introduce the strategy V* of the second player based on the switchover surface. 
Let t be any instant from [0.6]. We define the strip A@)(t) in the y,,y, plane, just as we 
defined the strip ,\(I) (t), replacing D (t) by E (t). The line SC*) (t) divides .\@) (t) into two 

parts. We denote by S+@)(t) the part into which the vector E(t)is directed, and the other 

part by-__@ (t). If z is such that X,,&9,t)se S+(z)(t), we write V* (1,~) = v, and if X1,: (@? 
t) I E S-c”) (t) , then we write V* (t,x) = -_y.’ On the line S(") (t) itself the value of V* (t,).z is 
arbitrarily chosen from the interval [-v,v]. 

The strategy V*isdetermined in exactly the same manner as G", but unlike the latter it 
is not strictly optimal. 

The reason for this is the following. When we choose arbitrarily the control of the second 
player at the switchover surface, we do not exclude, under ideal conditions (i.e. without ailow- 

ing for the error of approximation), the motion (t, II (1~) = (t. X,,, (6. t) r (t)), along S"'. The cost of 

the game along such motions may diminish. In other words, the second player may lose by 
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allowing the motions along the surface S @). This distinguishes it from the case of motion along 
the surface S@',when the point of view of the first player is considered /4, 5/. Introducing 
a measure of definiteness into specifying the control of the second player on the surface SW 

will not change anything: in forming this control with the help of the switchover surface 
constructed in an approximate manner, the second player will err compared with the choice made 
relative to the perfect surface, and this may lead to the appearance of the slippage mode. 
However, for this to happen, the first player must behave very "skilfully". If we neglect the 
possibility of the slippage mode appearing on the surface S(* in which the cost of the game 
along the motion could diminish, then we can regard the strategy V* as practically optimal. 

The qualitative character of the switchover lines of the second player is more complex 
than that of the switchover lines of the first player. Computer simulations show that the 
interval [0,6] is partitioned into several characteristic subintervals. On one of them the 
lines S(*)(t) coincide completely with the lines S(')(t), and on the other segments the lines 
S(z) (t), S(1) (t) overlap partially. If we proceed from the origin of coordinates,we see that 
their upper parts coincide up to the corner point of the switchover lines of the first player, 
and then diverge in opposite directions. In particular, the instances t = 3,5,7. at k = 1 
refer to segments of this type. The corresponding upper parts of the lines S@)(t) are shown 
in Fig.4. The dashed lines denote the segments not belonging to Se)(t). In addition to those 
described, we have short intervals where the lines of the second player change rapidly, from 
coincidence with the lines of the first player, to positions resembling those in Fig.4 and 
vice-versa. 

6. Let us give the results of numerical modelling of the motions of system (1.1) for 
two initial states z0 at the instant t,=O. The first (point a) is characterized by the lateral 
deviation zol = SOm, and the remaining coordinates z~, . . ..z..: are zero 

I L.=Q I 4-b 

U’ F V’ 1 F 

v* 0.75 2.20 0.63 2.88 
WE0 1.75 
V~IO 8% 

::63; 
0066 

1)' 0:23 0:24 

The second initial state is the point b with zero coordinates. The coefficient k on the right 
hand side of (1.1) was taken as unity. 

The cost of the game r(O,a) for the initial position (0.a) is equal to 0.69. The value 
was found experimentally by choosing the value c for which the point Xl,, (6, 0) Q lies at the 
boundary of the set W,(O). For the initial position (0, b) the cost r(0.b) is identical with 

Fig. 5 

The table gives the values of the payoff function 
~(I~(~),I,(@) obtained at the instant 6 for various types 
of player control. The expression uzO(v~ 10) denotes 
the constant control of the second player equal to zero 
(10 m/set respectively). The symbol v* corresponds to 
the control of the second player random with respect to 
time. The function LJ* was piecewise constant in t, with 
a step of 1 set, and thevalue of the function at every 
constant interval was chosen using a random number gener- 
ator realizing the uniform distribution over the segment 
[-IO, 101. The symbol F denotes the strategy of the first 
player, given by the formula (4.1) and used for all 
positions (t, t). 

To realize the strategies U', V*, we used the switch- 
over lines computed for 9 values of the parameter c : 0.64; 

O.iO; 0.56; 0.82; 0.88; 0.94; 1; 3; 5. The step A of discrete control schemes was equal to 0.05. The same 
step was used when realizing the strategy F. Increasing the step of the discrete scheme of 
the first player to 0.1, gave no appreciable change in the payoff. 

Fig.5 shows graphs of the change in lateral deviation zlft) with time t for the initial 
position (O,a), when the strategy V* is used for the second player. Curve 1 corresponds to 
the strategy V' of the first player, and curve 2 to the strategy F. 

The results obtained show that under the extremal perturbation from V*(the first line 
in the table) the linear control law F does not guarantee a successful landing approach. The 
combined method U' on the other hand, does give such a guarantee. Linear control does not 
allow successful completion of the process even when there are no extremal perturbations. 
Combined control on the other hand, will deal successfully with the case of large initial 
deviations (the second column). 

In conclusion, we turn our attention once again to the assumption that the termination 



time is fixed in formulating the modelling problem in question. A rigorous solution of :he 
analogous problem where the instant of termination (treated as the instant when the runway 

has been traversed) is not fixed a priori, but may lie within certain limits, is essentially 
more difficult, since the possibility of passing to a second-order game, which would be equiv- 
alent to the initial game, is lost. 
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